- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Sankaran, Kris (2)
-
Bengio, Yoshua (1)
-
Cao, Kim-Anh_LĂȘ (1)
-
Chayes, Jennifer (1)
-
Creutzig, Felix (1)
-
Donti, Priya L. (1)
-
Gomes, Carla P. (1)
-
Hassabis, Demis (1)
-
Jaques, Natasha (1)
-
Kaack, Lynn H. (1)
-
Kochanski, Kelly (1)
-
Kodikara, Saritha (1)
-
Kording, Konrad P. (1)
-
Lacoste, Alexandre (1)
-
Li, Jingyi_Jessica (1)
-
Luccioni, Alexandra Sasha (1)
-
Maharaj, Tegan (1)
-
Milojevic-Dupont, Nikola (1)
-
Mukkavilli, S. Karthik (1)
-
Ng, Andrew Y. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract High-throughput sequencing data lie at the heart of modern microbiome research. Effective analysis of these data requires careful preprocessing, modeling, and interpretation to detect subtle signals and avoid spurious associations. In this review, we discuss how simulation can serve as a sandbox to test candidate approaches, creating a setting that mimics real data while providing ground truth. This is particularly valuable for power analysis, methods benchmarking, and reliability analysis. We explain the probability, multivariate analysis, and regression concepts behind modern simulators and how different implementations make trade-offs between generality, faithfulness, and controllability. Recognizing that all simulators only approximate reality, we review methods to evaluate how accurately they reflect key properties. We also present case studies demonstrating the value of simulation in differential abundance testing, dimensionality reduction, network analysis, and data integration. Code for these examples is available in an online tutorial (https://go.wisc.edu/8994yz) that can be easily adapted to new problem settings.more » « less
-
Rolnick, David; Donti, Priya L.; Kaack, Lynn H.; Kochanski, Kelly; Lacoste, Alexandre; Sankaran, Kris; Ross, Andrew Slavin; Milojevic-Dupont, Nikola; Jaques, Natasha; Waldman-Brown, Anna; et al (, ACM Computing Surveys)Climate change is one of the greatest challenges facing humanity, and we, as machine learning (ML) experts, may wonder how we can help. Here we describe how ML can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by ML, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the ML community to join the global effort against climate change.more » « less
An official website of the United States government
